Class Outline

Compare and Contrast with discrete random variable

  • From Discrete Uniform DU(K) to Uniform, U(0,1)
  • pmf vs pdf
  • Relation between the distribution function F(x) and pdf f(x) of a continous random variable
    $$F′(x)=f(x).$$
  • pdf is not a probability but a funciton/tool for computing probability. Specifically,
    $$f(x)\neq P(X=x)$$
    and
    $$P(a≤X≤b)=\int_a^bf(x)\ dx.$$
  • Uniform U(0,1)
  • Exponential random variable $Exp(\lambda)$
  • Normal random variable $N(\mu, \sigma^2).$ (if time permits)

Homework 4

Textbook Sec 58 (Page 68): 5.1–5.6. To be discussed in class 11/1.

Class outline

  • Discrete random variable: Geometric random variable
  • Characterization of discrete r.v.: probability mass function, distribution function
  • Profiles of r.v.: E(X), Expectation (or expected value), and Var(X), Variance
  • Computing E(X) and Var(X) for Bernoulli and Binomial random variables

Homework 3

Textbook Sec 4.6 (Page 51): 4.1, 4.2, 4.3, 4.4, 4.7, 4.8, 4.9, 4.14. To be discussed in class 10/25

Class Outline

  • From x to X: Quantization of randomness/uncertainty
  • Discrete random variable: Probability mass function, distribution function
  • Bernoulli random variable
  • Binomial random variable
  • Toy example, real-world example, math/theoretical formulation: definitions and concepts

Homework 2

Sec 3.6 (Page 37): 3.1, 3.4, 3.10, 3.11, 3.12, 3.14, 3.18 (to be discussed in class on 10/11)

Homework 1

Sec2.7 Exercises (Page 21) : 2.1, 2.3, 2.5, 2.7, 2.9, 2.11; 2.19 (optional)

Class outline

  1. Conditional probability
  2. Bayes Theorem
  3. Independence

The probabilistic way to formulate the big X: Notions, ideas and definitions

  1. Sample space, $\Omega$: the set of all possible outcomes
  2. $\mathcal{F}$
  3. P, the probability function

Two-envelop problem or switching paradox: What’s wrong with the argument?

這門課在學什麼: 基礎機率,為何要學,它是什麼?要如何理解與應用它?( Why? What? How? )

  • 我們生活在一個充滿不確定,隨機與大大小小誤差的世界
  • 機率(與統計)是處理這些不確定/隨機/誤差的思考架構與處理想法/手法/程序的一個知識體
  • 當我們具備有機率/統計一定程度的了解後,我們可以在這些紊亂中更有效的扒梳一些頭緒,犯較少錯誤;更進一步地,做出比較合理的判斷與預測

From x to X

  • 簡單說,這門課可以視為我們學習由 x 到 X 的開始。 (小寫 x, 大寫 X)
  • 回顧:數,未知數,隨機變數

    • 例一:87, x, X (分別對應); 如: 某人的成績,某人的(未知)成績,該班同學的成績
    • 例二:170,x, X (分別對應); 如: 某人某次身高測量值,某人某次的(未知)測量值,某人身高測量值

    X, 如某班同學某次期中考的成績,東華彭魚雁身高的測量值

  • n 個觀察值的 枝葉圖,長條圖 (stem-and-leaf plot, histogram)

  • 極限($ n \rightarrow \infty $)標準化後(使得面積為 1)長條圖 ~~ 某些函數來反應/代表這樣的整體狀況

Overview

De Finetti, 寫了兩大巨冊機率論的機率學者, 一言總結他書的要點

Probability does not exist. 機率不存在

機率不存在,那他在寫什麼?我們這門課又在學些什麼呢?
其實,他是以文字矛盾來吸引我們的注意。但不只如此,他以很反諷的方式來提示—機率是我們思想的建構,它不是像石頭、飛鳥一樣的具體實際的物件,而是我們腦中所構想的概念。更重要的每個人也可能不盡相同,而時有不一致或矛盾的發生。

因此,建立一個不矛盾的架構,或大致上沒有不一致的機率規範,是讓我們了解機率,避免錯誤的一個開始。

這課是機率的第一門課。簡單總結,就是

$$\Large x \Rightarrow X.$$

Class Info

  • Syllabus Navigator: C. Andy Tsao Office: SE A411. Tel: 3520
  • Lectures: Tue. 1310-1500, Thr. 1610-1700 @ AE 211
    Office Hours: Mon. 15:10-16:00, Thr. 12:10-13:00. @ SE A411 or by appointment. (Mentor Hour: Mon, Tue 1200-1300.)
  • TA: 劉雅涵 何尚謙 Tel: 3517. @A408. Office Hour;
    • 雅涵: 星期二 16:00-18:00
    • 尚謙: 星期四 17:10-19:10 除了11/01(四)因有事,改為10/31(三) 17:00-19:00
  • Prerequisites: Calculus
  • Textbook: Dekking, Kraaikamp, Lopuhaä and Meester (2005). A Modern Introduction to Probabilit and Statistics: Understanding Why and How. Springer, London. Legal downloadable from NDHU
  • 期中考:11/6 (二) 1310–1440.
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×